Jump to content

ESO instala secundario de 1m de óptica adaptativa que compensa perturbaciones atmosféricas en el VLT


Publicaciones recomendadas

Publicado (editado)

Primera luz de un sistema de óptica adaptativa de vanguardia

 

 

eso1724a.jpg

 

La unidad de telescopio 4 (Yepun) del telescopio VLT (Very Large Telescope) de ESO se ha transformado en un telescopio completamente adaptativo. Después de más de una década de planificación, construcción y pruebas, la nueva instalación de óptica adaptativa AOF (de Adaptic Optics Facility) ha visto su primera luz con el instrumento MUSE, captando imágenes increíblemente precisas de galaxias y nebulosas planetarias. El acoplamiento de AOF y MUSE forma uno de los sistemas tecnológicos más avanzados y potentes jamás construidos para la astronomía terrestre.

La instalación de óptica adaptativa (AOF) es un proyecto a largo plazo del VLT (Very Large Telescope) de ESO para proporcionar un sistema de óptica adaptativa a los instrumentos de la Unidad de Telescopio 4 (UT4), siendo el primero de ellos MUSE (Multi Unit Spectroscopic Explorer, explorador espectroscópico multiunidad) [1]. La óptica adaptativa compensa el efecto de emborronamiento provocado por la atmósfera terrestre, permitiendo a MUSE obtener imágenes mucho más nítidas y dando como resultado dos veces el contraste alcanzado previamente. Ahora MUSE puede estudiar objetos del universo incluso más débiles.

"Ahora, incluso cuando las condiciones meteorológicos no son las óptimas, los astrónomos pueden seguir obteniendo una excelente calidad de imagen gracias al sistema de óptica adaptativa AOF," explica Harald Kuntschner, Científico del Proyecto AOF en ESO.

Tras una batería de pruebas con el nuevo sistema, el equipo de astrónomos e ingenieros fue recompensado con una serie de imágenes espectaculares. Los astrónomos fueron capaces de observar las nebulosas planetarias IC 4406, situada en la constelación de Lupus (el lobo) y NGC 6369, situada en la constelación de Ofiuco (el portador de la serpiente). Las observaciones de MUSE con el sistema de óptica adaptativa AOF dieron como resultado impresionantes mejoras en la nitidez de las imágenes, revelando estructuras en forma de capas nunca antes vistas en IC 4406 [2].

El sistema de óptica adaptativa AOF que hizo posibles estas observaciones se compone de muchas partes que trabajan juntas. Incluye las instalaciones 4LGSF (Four Laser Guide Star Facility, sistema de cuatro estrellas de guiado láser) y el espejo secundario deformable muy fino de UT4 [3] [4]. El 4LGSF emite al cielo cuatro rayos láser de 22 vatios para hacer que brillen los átomos de sodio de las capas superiores de la atmósfera, produciendo manchas de luz en el cielo que imitan a estrellas. Los sensores del módulo GALACSI (Ground Atmospheric Layer Adaptive Corrector for Spectroscopic Imaging, corrector adaptativo de capa atmosférica desde tierra para imagen espectroscópica) utilizan estas estrellas artificiales para determinar las condiciones atmosféricas.

Mil veces por segundo, el sistema AOF calcula la corrección que debe aplicarse para cambiar la forma del espejo secundario deformable del telescopio con el fin de compensar las perturbaciones atmosféricas. En particular, GALACSI corrige la turbulencia en la capa de la atmósfera de hasta un kilómetro por encima del telescopio. Dependiendo de las condiciones, la turbulencia atmosférica puede variar con la altitud, pero los estudios han demostrado que la mayoría de las perturbaciones atmosféricas se producen en esta "capa terrestre" de la atmósfera.

"El sistema AOF es esencialmente equivalente a elevar el VLT unos 900 metros, por encima de la capa más turbulenta de la atmósfera", explica Robin Arsenault, Gestor del Proyecto AOF. "Antes, si queríamos imágenes más nítidas, habríamos tenido que encontrar un sitio mejor o usar un telescopio espacial, pero ahora, con el sistema AOF, podemos crear condiciones mucho mejores sin movernos del sitio y por una pequeña parte de lo que costarían las otras opciones".

Las correcciones aplicadas por el sistema AOF mejoran de forma rápida y continua la calidad de imagen al concentrar la luz para formar imágenes más nítidas, permitiendo a MUSE resolver los detalles más finos y detectar estrellas más tenues, algo que antes no podía hacer. Actualmente GALACSI proporciona corrección sobre un amplio campo de visión, pero este es sólo el primer paso para traer la óptica adaptativa a MUSE. Se está preparando un segundo modo de GALACSI y se espera que vea su primera luz a principios de 2018. Este modo de campo estrecho corregirá la turbulencia a cualquier altitud, permitiendo observaciones de pequeños campos de visión con mayor resolución.

"Hace 16 años, cuando propusimos construir el revolucionario instrumento MUSE, nuestra idea era acoparlo con otro sistema altamente avanzado: AOF", afirma Roland Bacon, líder del proyecto MUSE. "El potencial de MUSE de hacer descubrimientos, ya amplio de por sí, se ha mejorado aún más. Nuestro sueño se está convirtiendo en realidad".

Uno de los principales objetivos científicos del sistema es observar objetos débiles en el universo distante con la mejor calidad de imagen posible, lo que requiere de exposiciones de muchas horas. Joël Vernet, científico de los proyectos ESO MUSE y  GALACSI, comenta: "En particular nos interesa observar las galaxias más pequeñas y débiles a las mayores distancias. Son galaxias en formación, aún en su infancia, y son clave para comprender cómo se forman las galaxias".

Además, MUSE no es el único instrumento que se beneficiará del sistema AOF. En un futuro próximo, otro sistema de óptica adaptativa llamado GRAAL se pondrá en marcha en el instrumento infrarrojo HAWK-I (ya en funcionamiento) afinando su visión del universo. Le seguirá más tarde el nuevo y potente instrumento ERIS.

"ESO está impulsando el desarrollo de estos sistemas de óptica adaptativa y AOF es también un pionero para el ELT (Extremely Large Telescope) de ESO", agregó Arsenault. "Trabajar en el sistema AOF nos ha proporcionado (a científicos, ingenieros e industria por igual) una valiosa experiencia y conocimientos que ahora usaremos para superar los retos de la construcción del ELT".

 

fuente: http://www.eso.org/public/spain/news/eso1724/

Editado por fsr
  • Like 5

Fernando

Publicado (editado)

NGC 6369 antes y después del sistema AOF

 

eso1724b.jpg

 

La nebulosa planetaria NGC 6369 vista al natural (izquierda) y cuando el sistema AOF proporciona la corrección de la capa terrestre de la turbulenta atmósfera (derecha). El sistema AOF proporciona una imagen mucho más nítida de los objetos celestes y permite el acceso a las estructuras mucho más finas y débiles.

Crédito:

ESO/P. Weilbacher (AIP)

 

fuente: http://www.eso.org/public/spain/images/eso1724b/

 

 

NGC 6563

 

eso1724j.jpg

 

NGC 6563 es una nebulosa planetaria situada en la constelación de Sagitario (el arquero). Esta impresionante imagen obtenida con la poderosa simbiosis entre el sistema AOF y el instrumento MUSE revela las estructuras de la débil nebulosa como nunca antes se había visto.

Crédito:

ESO/P. Weilbacher (AIP)

 

fuente: http://www.eso.org/public/spain/images/eso1724j/

Editado por fsr
  • Like 5

Fernando

Publicado

Terrible, hace un rato estaba leyendo el post del ESO y lo iba a rebotar en el foro cuando vi tu post, jajaja.

Saludos,

Sergio

Sergio Dominguez

Coordinador Sección Estrellas Variable de la LIADA
Docente Curso Astronomía General y Astronomía Observacional I y II

Crear una cuenta o conéctate para comentar

Tienes que ser miembro para dejar un comentario

Crear una cuenta

Regístrese para obtener una cuenta nueva en nuestra comunidad. ¡Es fácil!

Registrar una nueva cuenta

Conectar

¿Ya tienes una cuenta? Conéctate aquí.

Conectar ahora
×
×
  • Crear nuevo...