ricardo Publicado 25 de Noviembre del 2019 Publicado 25 de Noviembre del 2019 DZSDRUIDA, clear, javieriaquinta y 4 otros reaccionaron a esto 7 iOptron CEM70AG Askar ACL200, Duoptic ED Pro 60, APO 90, Photo 90 5 elementos QHY600M, QHY294M Pro, QHY268C, QHY183M, QHY5III462C Garin - Buenos Aires - Argentina Duoptic - Espacio Profundo Mi Galeria de Fotos IG: @rfcontrerasb
juanca Publicado 26 de Noviembre del 2019 Publicado 26 de Noviembre del 2019 Asombroso como se va aumentando el conocimiento en estos tiempos ,Pego artículo de Nukas. https://naukas.com/2019/11/23/cartografiando-la-ignorancia-292/ Abrir " si Einstein leyese esto,,,," Quntum Physics our study suggets...Poner el traductor y leer detenidamente,
RodyG Publicado 26 de Noviembre del 2019 Publicado 26 de Noviembre del 2019 Muy bueno el video !! SkyWatcher Explorer 200p f/5 (Dobson con PushTo) - Oculares: BST 25mm, BST 18mm, BST 12mm, BST 8mm, BST 5mm - Barlow: Acromático X2 - Filtros: O-III, UHC, Moon & Skyglow, Polarizador variable, #12, #23A, #56, #80A
fsr Publicado 28 de Noviembre del 2019 Publicado 28 de Noviembre del 2019 Hay que darle tiempo a ver que pasa. Esto está todo en una etapa de investigación, y por lo visto sus aplicaciones son limitadas, tienen problemas que solucionar, y no se comprende totalmente su funcionamiento: https://www.dw.com/en/quantum-computing-is-it-really-all-its-cracked-up-to-be/a-51118334 "The point is, Michielsen says, with these devices there are still systematic errors that the experts are currently unable to resolve. These machines are also extremely sensitive and any unexpected stimuli can hinder results. In fact, there are many aspects of quantum computing that still remain a mystery. For quantum scientists, it's imperative that such mysteries are unravelled in order to make progress. "One cannot build a lot of applications on mysteries," says Michielsen. "Of course, many things in the past have been developed without us understanding the physics behind it." She gives the example of the steam engine — which was invented without creators understanding every detail of the way it functioned. Similarly with quantum computing, Michielsen says, we don't have to unlock all the secrets of this complex science to advance, but the more we know the better. So what can quantum computers do today? It depends on what kind of quantum computer you are talking about. The most common gate-based machine, the ones used by IBM and Google, don't have a lot of applications — yet. The calculation that Sycamore carried out last month using 53 superconducting qubits isn't useful in daily life. At the moment these machines can do very simple algorithms. "We can add numbers," says Professor Michielsen. "One can factorize small numbers — so that's always this prime factorization. One can also simulate small molecules, but this isn't reliably accurate." The other main type of quantum computer is a quantum annealer. As with D-Wave's machine, annealing allows for more prototype applications. These machines have 2,000 qubits and work differently to the way gate-based computers operate, but still use quantum effects. Using D-Wave's technology, Volkswagen carried out research on traffic flow optimization in Beijing. Researchers at The Roswell Park Cancer Institute in Buffalo, New York, used quantum annealing to optimise the amount of intensity-modulated radiotherapy that could be given to two prostate cancer patients. In 2018, Qx Branch, a data analytics and quantum computing company, used quantum annealing for machine learning to predict the outcome of the 2016 US Presidential race." clear reaccionó a esto 1 Fernando
Publicaciones recomendadas
Crear una cuenta o conéctate para comentar
Tienes que ser miembro para dejar un comentario
Crear una cuenta
Regístrese para obtener una cuenta nueva en nuestra comunidad. ¡Es fácil!
Registrar una nueva cuentaConectar
¿Ya tienes una cuenta? Conéctate aquí.
Conectar ahora