gianse54 Publicado 27 de Agosto del 2009 Publicado 27 de Agosto del 2009 Interesante para los que les gusta la Cosmologia Fuente - http://ciencia.nasa.gov/headlines/y2009 ... htm?friend Una de las últimas misiones del transbordador espacial se encargará de transportar un poderoso detector de partículas, que podría descifrar algunos de los más grandes misterios del universo. Agosto 14, 2009: El programa del transbordador espacial de la NASA está llegando a su fin. Con apenas alrededor de media docena de vuelos por realizar, las tripulaciones de los transbordadores darán los últimos retoques a la Estación Espacial Internacional (EEI), lo cual pondrá fin a doce años de construcción en órbita sin precedentes. El ícono y caballo de batalla del programa espacial estadounidense habrá finalizado su Gran Tarea. Pero, como diría el presidente ejecutivo de Apple, Steve Jobs, aún hay una cosa más... Tras una decisión tomada por el Congreso de Estados Unidos, en 2008, se añadió un vuelo más al calendario, casi al final del programa. Actualmente programado para 2010, este vuelo adicional del transbordador tiene como objetivo lanzar al espacio un buscador de galaxias de antimateria. El dispositivo que realiza la búsqueda se denomina Espectrómetro Alfa Magnético (Alpha Magnetic Spectrometer o AMS, en idioma inglés). Es un detector de rayos cósmicos valuado en 1.500 millones de dólares, y será llevado hasta la EEI por el transbordador. Además de detectar galaxias lejanas formadas completamente por antimateria, el AMS también pondrá a prueba las teorías más aceptadas sobre la materia oscura, una sustancia invisible y misteriosa que conforma el 83 por ciento de la materia del universo. Asimismo, buscará strangelets, una forma de materia, aún teórica, que es ultra-masiva porque contiene los famosos quarks extraños. Un mejor entendimiento de los strangelets ayudará a los científicos a estudiar los microquásares y también los diminutos agujeros negros primordiales, a medida que se evaporan, lo que probaría la existencia de estos diminutos agujeros negros. Todos estos exóticos fenómenos pueden hacerse notar por los rayos cósmicos de energía ultra-alta que emiten —el tipo de partículas que constituyen la especialidad del AMS. "Por primera vez, el AMS medirá los rayos cósmicos de muy alta energía con gran precisión", explica el físico Samuel Ting, premio Nobel y profesor del Instituto Tecnológico de Massachusetts (Massachusetts Institute of Technology o MIT, en idioma inglés), quien creó el AMS y ha guiado su desarrollo desde 1995. Galaxias de antimateria, materia oscura, strangelets —estos son precisamente los fenómenos que los científicos ya conocen. Si usamos la historia como guía, los descubrimientos más emocionantes serán cosas que nadie haya imaginado antes. Así como los radiotelescopios y los telescopios infrarrojos un día revelaron fenómenos cósmicos que antes eran invisibles con los telescopios ópticos tradicionales, el AMS abrirá a la exploración otra faceta del cosmos. "Estaremos explorando nuevos territorios", dice Ting. "Las probabilidades de hacer descubrimientos son enormes". Ting a menudo compara al AMS con los aceleradores de partículas de elevada potencia, de las instalaciones como la CERN (sigla que en idioma francés significa: Conseil Européen pour la Recherche Nucléaire u Organización Europea para la Investigación Nuclear, en idioma español), en Ginebra, Suiza. Más que detectar rayos cósmicos de alta velocidad que provienen de todas partes de la galaxia, estos aceleradores subterráneos crean sus propias partículas, usando enormes cantidades de energía eléctrica. Para estudiar dichas partículas, la CERN y el AMS usan el mismo truco básico: ambos utilizan poderosos campos magnéticos para desviar las trayectorias de las partículas, y con detectores hechos con placas de silicio y otros sensores colocados en el interior de los detectores, trazan las trayectorias curvas de las partículas. Los sensores generan muchos terabits de datos y las supercomputadoras se encargan de reducir todos esos datos para de ellos inferir la masa de cada partícula, su energía y su carga eléctrica. La supercomputadora es, en parte, la razón principal por la cual el AMS debe montarse en la EEI en vez de ser un satélite independiente. El AMS produce datos en cantidades tan grandes que no pueden ser enviados a la Tierra desde el espacio, así que se deberá llevar a bordo una supercomputadora con 650 unidades de procesamiento para hacer la reducción de los datos en órbita. Debido en parte a esta computadora gigante, el AMS requiere 2,5 kilovatios de potencia para funcionar —una cifra superior a lo que un satélite normal con paneles solares puede proveer, pero que cabe muy bien en los 100 kilovatios que proporciona la estación espacial. "El AMS es básicamente un detector de partículas multiuso que se ha llevado al espacio", dice Ting. Sin embargo, hay dos diferencias importantes entre el AMS y los aceleradores subterráneos. En primer lugar, el AMS detectará partículas tales como núcleos pesados que poseen muchísima más energía que la que los aceleradores de partículas pueden reunir. El acelerador de partículas más poderoso del mundo, el Gran Colisionador de Hadrones (Large Hadron Collider, en idioma inglés) de la CERN, puede hacer chocar partículas con una energía combinada de aproximadamente 7 tera-electronvoltios (TeV, una unidad de uso común en física de partículas que se utiliza para medir energía). En contraste, los rayos cósmicos pueden tener energías de 100 millones de TeV o más. La otra diferencia importante es que los aceleradores pueden hacer chocar las partículas unas contra otras para aprender algo sobre las partículas mismas, mientras que el AMS tomará muestras de partículas de alta energía que provienen del espacio profundo con el fin de conocer algo más sobre el cosmos. Por ejemplo, en cosmología, uno de los misterios sin resolver es el caso de la antimateria perdida. De acuerdo con los mejores modelos hechos por los físicos, la Gran Explosión (el Big Bang, en idioma inglés) debería de haber producido la misma cantidad de materia que de antimateria. Entonces, ¿adónde fue la antimateria? No puede estar cerca, ya que si así fuese, veríamos emisiones brillantes de rayos X en aquellos lugares donde la materia y la antimateria se aniquilarían al entrar en contacto. Otra explicación puede ser que algunas galaxias lejanas estén hechas enteramente de antimateria en vez de materia. Debido a que la antimateria no es nada diferente de la materia común, los astrónomos no podrían distinguir si una galaxia lejana está hecha de materia o de antimateria sólo observándola. Sin embargo, el AMS hallaría fuertes evidencias de las galaxias de antimateria si detectara tan sólo un núcleo de anti-helio o de algún elemento de antimateria más pesado. Las colisiones entre rayos cósmicos cerca de la Tierra pueden producir partículas de antimateria, pero las probabilidades de que esas colisiones produzcan un núcleo intacto de anti-helio son tan pequeñas que aun si se encontrara un sólo núcleo de anti-helio sería una poderosa evidencia de que aquel núcleo se ha movido hasta la Tierra desde una región remota del universo que esté dominada por antimateria. Otros instrumentos, como el satélite italiano PAMELA, han buscado los núcleos de anti-helio, pero ninguno de ellos ha sido lo suficientemente sensible como para descartar la existencia de las galaxias de antimateria. El AMS posee alrededor de 200 veces más poder de recolección de partículas que ningún otro detector que se haya enviado antes al espacio. Si el AMS no detecta núcleos de anti-helio, Ting dice que los científicos sabrán que no hay galaxias de antimateria en, al menos, 1000 megaparsecs a la redonda —es decir, aproximadamente la frontera del universo observable. Otro misterio que el AMS ayudará a resolver es la naturaleza de la materia oscura. Los científicos saben que la gran mayoría del universo esta compuesta por una materia oscura que aún no ha podido ser vista directamente, en vez de por materia común. Ellos simplemente no saben qué es la materia oscura. Una teoría en boga es que la materia oscura está hecha de una partícula llamada neutralino. Las colisiones entre neutralinos deberían de producir una gran cantidad de positrones de alta energía, de modo que el AMS podría probar que la materia oscura está hecha de neutralinos buscando este exceso de positrones de alta energía. "Por primera vez podríamos averiguar de qué está hecha la materia oscura", dice Ting.
marcelo2010 Publicado 27 de Agosto del 2009 Publicado 27 de Agosto del 2009 jorge muy buena nota !!!!, para quien le interese saber como funciona el AMS (Alpha Magnetic Spectrometer) les dejo el link ... lindo fierro ... http://ams.cern.ch/ saludos
Sincrotimix Publicado 27 de Agosto del 2009 Publicado 27 de Agosto del 2009 Muy interesante el artículo, Jorge. Muchas gracias. Y gracias también Marcelo por el enlace. Recomiendo darle una hojeada (sobre todo al enlace http://cyclo.mit.edu/~bmonreal/ dentro del que puso Marcelo) porque el bicho este es verdaderamente una maravilla tecnológica. Saludos
juanca Publicado 27 de Agosto del 2009 Publicado 27 de Agosto del 2009 Muy interesante el tema. Cómo me gustaría estar cuando se devele la estructura de la materia, la antimateria y la materia oscura. Por otra parte me impactó que en el mensaje de Gianse dice que la decisión de enviar el instrumento fué tomada por el Senado de EEUU en el año 2008. Eso me recuerda de un país que en éste momento no me viene a la memoria. Saludos Juanca
matitoma Publicado 28 de Agosto del 2009 Publicado 28 de Agosto del 2009 interesantisimo articulo... ojala se pueda descifrar el enigma de la materia oscura con el ams.
Nestor Olivieri Publicado 29 de Agosto del 2009 Publicado 29 de Agosto del 2009 Hola a todos Muy interesante el detector que describe el artículo y sus propósitos investigativos. Me parece que desliza un error al poner la frontera del universo observable en torno a los 1000 megaparsecs. saludos
erestumismo Publicado 18 de Noviembre del 2010 Publicado 18 de Noviembre del 2010 Eimados panelistas, me presento y espero poder aprender de ustedes, y asu vez poder compartir algo, y una de las primeras cosas es NO BUSQUES A LOS VIVOS ENTRE LOS MUERTOS, LO QUE QUIERE DECIR ESTO EN TERMINOS DE ANTIMATERIA, claro que existe claro que esta pero la queremos allar en el cosmos donde no se encuentra y la antimateria esta mas viva que nunca solo que que la queremos allar con utensilios y erramientas totalmente limitadas a nuestro entendimiento
Borges Publicado 18 de Noviembre del 2010 Publicado 18 de Noviembre del 2010 Dios Santo amigo, le invito a que urgente le avise a los médicos de que dejen de usar los Tomógrafos que emiten positrones porque si la antimateria no se puede hallar, entonces ellos y los fabricantes del dispositivo no se enteraron de que están sacando tomografías inexistentes y eso sin mencionar varios usos más que se podría dar a la antimateria. De paso revise por favor la escritura. Saludos http://es.wikipedia.org/wiki/Antimateria http://es.wikipedia.org/wiki/Tomograf%C ... positrones
Publicaciones recomendadas
Crear una cuenta o conéctate para comentar
Tienes que ser miembro para dejar un comentario
Crear una cuenta
Regístrese para obtener una cuenta nueva en nuestra comunidad. ¡Es fácil!
Registrar una nueva cuentaConectar
¿Ya tienes una cuenta? Conéctate aquí.
Conectar ahora